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“A horse jumping into a river”

“A dolphin jumping into the ocean”

“A bike driving in a snowy forest”

“A train riding on rails, autumn view”

Figure 1. Given an input video and a text prompt describing the target objects and scene, our method generates a new video in which the
overall motion and scene layout of the input video are preserved, while allowing for notable structural and appearance changes.

Abstract

We present a new method for text-driven motion trans-
fer – synthesizing a video that complies with an input text
prompt describing the target objects and scene while main-
taining an input video’s motion and scene layout. Prior
methods are confined to transferring motion across two sub-
jects within the same or closely related object categories
and are applicable for limited domains (e.g., humans). In
this work, we consider a significantly more challenging set-
ting in which the target and source objects differ drasti-
cally in shape and fine-grained motion characteristics (e.g.,
translating a jumping dog into a dolphin). To this end,
we leverage a pre-trained and fixed text-to-video diffusion
model, which provides us with generative and motion pri-
ors. The pillar of our method is a new space-time fea-
ture loss derived directly from the model. This loss guides
the generation process to preserve the overall motion of
the input video while complying with the target object in
terms of shape and fine-grained motion traits. 1 Project
page: https://diffusion-motion-transfer.
github.io/

1Code will be made publicly available.

1. Introduction
Imagine transferring the car’s motion shown in the video
in Fig. 1 to a different object, such as a bicycle or a train.
This task poses a crucial challenge – retaining key motion
characteristics of the input video, such as the car’s direc-
tion of motion, speed, and pose, while substantially altering
the dynamic object’s structure to convey the target’s unique
visual attributes. Conceptually, solving this task requires
prior knowledge about objects’ appearance, pose, shape,
and motion under deformations and different viewpoints, as
well as an understanding of their interaction with the scene
(e.g., turning the car into a bicycle requires revealing un-
seen background content and synthesizing plausible scene
effects, such as shadows).

Previous methods have been primarily focused on trans-
ferring motion across two similarly-looking videos depict-
ing two subjects within the same object category. These
methods are typically confined to object categories for
which strong geometric priors exist, e.g., humans for which
parametric models for robust shape and pose are available
(e.g., [7, 11]). Other works attempt to learn such explicit
mid-level representation in a self-supervised manner from
the input videos (e.g., [39, 60])– an extremely challeng-
ing task by itself. In this work, we take the task of mo-
tion transfer to the realm of text-driven video editing, where
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the target object and scene are specified via a text prompt.
We aim at addressing a significantly more general setting,
which involves transferring motion across different object
categories under significant variations in shape and defor-
mations across time (Fig. 1)

Our approach diverges from traditional motion transfer
works by avoiding explicit mid-level modeling of pose and
shape. Instead, we harness the generative motion priors
learned from broad video data by a pre-trained and fixed
text-to-video model. Specifically, we delve into the inter-
mediate space-time feature representation learned by the
video model and introduce a new loss that guides the gen-
eration process of the target video towards the preservation
of the original video’s overall scene layout and motion. Im-
portantly, our method allows flexibility and deviations from
the exact structure and shape of the source objects. This
contrasts with prior works in text-driven image and video
editing that manipulate spatial features of a pre-trained text-
to-image model. These methods inherently lack the ability
to perform consistent structural edits across frames since
they rely solely on spatial image priors. To the best of our
knowledge, our work is the first to empirically analyze and
harness space-time features of a text-to-video model.

Our lightweight framework works in a zero-shot fash-
ion, requiring no training data or fine-tuning. We demon-
strate results on many videos and edits, encompassing var-
ious objects and scenes. We further suggest a new met-
ric to measure motion similarity under shape deviation and
quantitatively evaluate our method w.r.t. existing text-to-
video methods, demonstrating state-of-the-art performance
in terms of motion preservation and edit fidelity.

To summarize, our key contributions include:
• An effective zero-shot framework that harnesses the gen-

erative motion prior of a pre-trained text-to-video model
for the task of motion transfer.

• New insights about the space-time intermediate features
learned by a pre-trained text-to-video diffusion model.

• A new metric for evaluating motion fidelity under struc-
tural deviations between two videos.

• State-of-the-art results compared to competing methods,
achieving a significantly better balance between motion
preservation and fidelity to the target prompt.

2. Related works

Motion transfer. A related task to ours is motion trans-
fer from a source to a target subject, where the subjects
are of the same or closely related object categories (e.g.,
[1, 11, 29, 53, 54, 66, 67]). These methods take as input a
driving video depicting the source motion, and an image
or a video, depicting the target subject. A prevalent ap-
proach among these methods is to explicitly model the pose
of the dynamic object via a parametric model (e.g. Open-
Pose [7]). Thus, these methods are largely restricted to do-
mains for which robust parametric models exist (e.g., hu-
mans or faces) or to transferring motion across videos de-
picting similar motion and closely related object categories.

In contrast, we are aimed at text-driven motion transfer
across distinct object categories. That is, the target object
and scene are specified through a text prompt, where the
source and target objects can differ significantly in shape,
appearance, and their natural fine-grained motion traits.

Text-to-video models. Early works on text-to-video gener-
ation utilized VAE or conditional GAN frameworks [32, 38,
43] trained on small-scale datasets of simple domains (e.g.,
moving digits). Recently, there have been substantial efforts
in training large-scale text-to-video models on vast datasets
with autoregressive Transformers (e.g., [24, 63, 68]) or Dif-
fusion Models (e.g., [5, 22]). A prominent recent trend ex-
tends pre-trained text-to-image (T2I) diffusion models to
text-to-video (T2V) generation by adding temporal layers
on top of an image architecture [4, 18, 46, 56]. Make-A-
Video [56] add temporal Convs and attention layers to a
pre-trained T2I pixel-space diffusion model. Other works
extend T2I diffusion models that operate on a latent space
(e.g., StableDiffusion [50]) to the temporal domain [4, 18].

Several works [13, 17, 40, 65] train or fine-tune dif-
fusion models for video-to-video translation tasks. Gen-
1 [17] design a video architecture that is conditioned on
structure/appearance representations, allowing text-driven
appearance manipulation of a reference video. Control-A-
Video [13] extends a conditional T2I to the temporal do-
main, allowing the generation of videos that preserve the
per-frame layout of a reference video. Nevertheless, since
these methods are conditioned on generic mid-level rep-
resentations of the reference video, they do not allow the
preservation of the motion of the reference video while sig-
nificantly deviating from the per-frame structural layout. In
this work, we utilize a pre-trained publicly available T2V
diffusion model [8, 64] and show for the first time how it
can be leveraged for motion transfer in a zero-shot manner.

Image & video editing via feature manipulation. There
has been unprecedented progress in text-to-image genera-
tion using diffusion models [14, 15, 21, 42]. Following this
success, a surge of works empirically analyzed the internal
feature representation of prominent T2I diffusion models,
e.g., StableDiffusion [50], and showed how to perform var-
ious editing tasks using simple operations in the T2I fea-
ture space.[6, 12, 20, 23, 35, 45, 62]. Prompt-to-Prompt
[20] analyzed the cross-attention maps and showed how
to manipulate them for controlling the spatial composition
in generated images. Plug-and-Play Diffusion (PnP) [62]
showed that the spatial features capture semantic informa-
tion at high spatial granularity and utilized them for image-
to-image translation.

A prominent line of works adopt a pre-trained T2I dif-
fusion model for video editing [9, 19, 28, 48, 69]. For ex-
ample, Tune-A-Video [69] fine-tunes a T2I model on a sin-
gle input video and uses the fine-tuned model for stylizing
the video or replacing object categories. TokenFlow [19]
performs consistent video editing in a zero-shot manner
by enforcing consistency on the diffusion features across
frames. Nevertheless, these methods do not have access to
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Figure 2. Diffusion feature inversion via guided feature reconstruction. We extract space-time features f from an input video (a) and
steer the generation process of a random sample to produce the same feature f , using feature reconstruction as guidance (b); the synthesized
videos closely resemble the original video content in terms of appearance, shape, and pose. Replacing the full space-time features with
their spatial marginal mean feature SMM[f ] allows for more flexibility (c); the SMM feature inversion results capture the original object
pose, general position, and scene layout yet are not restricted to the original content at the pixel-level. This is also demonstrated in the
nearest neighbor frames retrieved from other videos depicting similar actions, according to similarly in SMM[f ] features (c).

a T2V generative motion prior and are not designed for edits
that require significant structural deviation from the original
video. Unlike these works, we leverage the motion prior of
a large-scale T2V model, which allows us to support edits
that require shape deviation (e.g., car to bike in Fig. 1), uti-
lizing a novel loss function that we derive from the model’s
feature space. To the best of our knowledge, our work is
the first to investigate the internal feature representation of
a T2V model and leverage it for an editing task.

Consistent video editing. Several recent methods have
leveraged layered video representations for consistent text-
driven video editing [2, 10, 25, 27, 31, 34, 71]. For exam-
ple, Text2LIVE [2] proposed to use a pre-trained Layered
Neural Atlases (NLA) [27] representation, which is edited
using losses defined in CLIP text-image space [49]. How-
ever, since the structure and motion of the edited video are
determined via the pre-trained NLA, such methods are re-
stricted to only appearance changes. Recently, [31] gen-
eralized this approach to allow local structural changes in
the edited videos. Nevertheless, NLA takes hours to train,
and cannot faithfully represent complex videos due to the
strong regularization of objects’ motion. In addition, all
these methods use a 2D generative prior, thus cannot sup-
port large structure deviation and adaption of motion.

3. Preliminary

Diffusion models. Diffusion models [15, 21, 46, 57] are
generative models that aim to approximate a data distribu-

tion q by mapping an input noise xT ∼ N (0, I) to a clean
sample x0 ∼ q, through an iterative denoising process. The
DDIM sampler allows to denoise an initial noise xT in a
deterministic manner [58]. By applying DDIM inversion,
a clean sample x0 can be mapped back to the sequence of
noisy samples {xi}Tt=1 used to generate it.

In latent text-to-image (T2I) diffusion models, e.g., Sta-
bleDiffusion [50], a pre-trained encoder compresses an
RGB image I ∈ RH×W×3 to a latent x ∈ RH′×W ′×4,
which can be decoded back to the high-resolution space.
These T2I models comprise a UNet architecture [52], which
consists of Convolutions and Attention modules.

Latent video diffusion models (e.g., [4, 64]) extend la-
tent T2I models to text-to-video (T2V) by inflating the 2D
architecture to the temporal domain, i.e., adding temporal
convolutions and temporal attention layers, and fine-tuning
on video datasets. In this case, the T2V model generates
a latent video x ∈ RF×H′×W ′×4, which is then decoded
to the output RGB video V ∈ RF×H×W×3. In this work,
we utilize the publicly available ZeroScope T2V [8] model,
which inflates StableDiffusion [50].

4. Method

Given an input video V and a target text prompt P , our goal
is to generate a new video J that preserves the overall mo-
tion and semantic layout of V , while complying with P . We
utilize ZeroScope – a pre-trained latent T2V model [8, 64].

The key component of our method, illustrated in Fig. 3,
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Figure 3. Pipeline. (a) Given an input video, we apply DDIM inversion and extract space-time features f ∈ RF×M×N×D from interme-
diate layer activations. We obtain our Spatial Marginal Mean (SMM) feature SMM[f ] ∈ RF×D by computing the mean over the spatial
dimensions, and compute the pairwise differences between each pair of SMM features. (b) For editing, we guide the generation at each
denoising step with our Pairwise SMM differences objective (b). See Sec. 4 for more details.

is a novel objective function that is used as guidance dur-
ing the generation process of J . We conceive this objec-
tive based on our empirical analysis that reveals new in-
sights about space-time diffusion features extracted from
the model. Specifically, we show that the first-order statis-
tics of the features in the spatial dimensions, i.e., the spatial
marginal mean of the features, can serve as a powerful per-
frame global descriptor that (i) retains spatial information
such as objects’ position, pose, and the semantic layout of
the scene, and (ii) robust to pixel-level variations in both
appearance and shape.

4.1. Space-time analysis of diffusion features

We focus our analysis on features extracted from the inter-
mediate layer activations of the video model. Recall that the
video model is initialized from a text-to-image model, for
which the semantic DIFT features [59], were shown to en-
code localized semantic information shared across objects
from different domains [59, 62]. Here, we examine the
space-time properties of the corresponding features in the
video model. See Supplementary Material (SM) for details
about the video model architecture and feature selection.

Given the input video V , we apply DDIM inversion with
an empty prompt [58], and obtain a sequence of latents
[x1, ...,xT ], where xt is the video latent at generation step
t. We input the latent xt to the network and extract the
space-time features f(xt) ∈ RF×M×N×D, where F,M,N
are the number of frames, height and width of the D dimen-
sional feature activation, respectively.

Diffusion feature inversion. To gain a better understand-
ing of what the features {f(xt)}Tt=1 encode, we adopt the
concept of “feature inversion” [36, 55, 61]. Our goal is to
optimize for a video V∗, randomly initialized, that would
produce these features when fed into the network. Specifi-
cally, this is achieved using feature reconstruction guidance
[16, 41] during the sampling process of V∗. Formally,

x̂T ∼ N (0, I)
x̂t−1=Φ(x∗

t , Ps),where x∗
t =argminx̂ ∥f(xt)− f(x̂t)∥2

Here, Φ is the diffusion model, and Ps is a general text
prompt describing the input video (e.g., “a car”). We mini-
mize the feature reconstruction objective using gradient de-
scent at each generation step. See SM for more details.

Figure 2 shows our inversion results for the space-time
features extracted from an input video; we repeat the inver-
sion process several times, each with different random ini-
tialization (i.e., different seeds). We observe that inverted
videos nearly reconstruct the original frames (Fig. 2(b)).

Ultimately, we opt to find a feature descriptor that re-
tains such information about objects’ pose and the semantic
layout of the scene yet is robust to variations in appearance
and shape. To reduce the dependency on the pixel-level in-
formation, we introduce a new feature descriptor, dubbed
Spatial Marginal Mean (SMM), obtained by reducing the
spatial dimensions. Formally,

SMM[f(xt)] =
1

M ·N

M∑
i=1

N∑
j=1

f(xt)i,j (1)

Where f(xt)i,j ∈ RD is the entry at spatial location (i, j)
in the space-time feature volume f(xt).

We repeat the inversion experiment (Eq. 1), with
{SMM[f(xt)]}Tt=1 as the target features to reconstruct. Fig-
ure 2(c) shows the inversion results for the SMM features,
for different initializations. Remarkably, although the spa-
tial dimensions are collapsed in the SMM features, the in-
verted videos convey the correct pose and position of ob-
jects, while depicting larger structural and appearance vari-
ations than using the full space-time features.

We further demonstrate these properties by treating the
spatial marginal mean associated with each frame as a
global per-frame descriptor, and using it to retrieve nearest
neighbour frames from other videos. As seen in Fig. 2(d),
the retrieved nearest frames depict the same pose, under no-
ticeable appearance and viewpoint changes.



Input video

“A penguin swimming in outer space”

“A duck swimming in a pond”

“An airplane driving in a forest”

“A motorbike driving in a forest”

Input video

“A camel crossing a road”

“A giraffe crossing a road”

Input video

“A dragon sitting in a floral forest”

“A lion sitting in a forest”

Input video

Figure 4. Sample results of our method. See SM for full video results.

4.2. Motion-guided video generation
Based on our findings, we now turn to the task of generating
a new video J that complies with the input prompt P and
preserves the motion characteristics of the driving video V .

Our feature inversion analysis raises the question of
whether the same approach can be used for editing, by sim-
ply replacing the source prompt Ps with an edit prompt P
in Eq. 1.

Figure 7 shows these results for a couple of videos,
which demonstrate two issues: (i) depending on the initial-
ization, the optimization may converge to a local minima in
which the accurate position of objects and their orientation
may differ from the input, (ii) the SMM features still retain
appearance information, which reduces the fidelity to the
text prompt. We propose the following two components to
resolve these issues.

Pairwise SMM differences. As seen in Fig. 7, directly
optimizing for the SMM features often prevents us from de-
viating from the original appearance. To circumvent this
problem, we propose an objective function that aims to pre-
serve the pairwise differences of the SMM features, rather
than their exact values. Formally, let ϕt

i, ϕ̃
t
i ∈ Rd be the

SMM features for frame i and step t for the driving video
and the generated video, respectively. For a generation step
t, the pairwise SMM differences ∆t, ∆̃t ∈ RF×F×d are
defined as follows:

∆t
(i,j) = ϕt

i − ϕt
j ∆̃t

(i,j) = ϕ̃t
i − ϕ̃t

j (2)

for i, j ∈ {1, . . . , F}. Our loss for time step t is then:

L(SMM(f(xt)),SMM(f(x̃t)))=
∑
i

∑
j

||∆t
(i,j) − ∆̃t

(i,j)||
2
2

(3)
Intuitively, this loss lets us preserve the relative changes

in the features through time, while discarding the exact ap-
pearance information of the source video (Fig. 7).

Initialization. It is well-known that the diffusion denois-
ing process is performed in a coarse-to-fine manner, thus,
the initialization plays an important role in defining the
low frequencies of the generated content [3, 37]. Initial-
ization from a random point may often converge to an un-
desired local minimum, in which object position is not well-
preserved. Note that the low-frequency information of the
original video is readily available in the DDIM inverted



Algorithm 1 Motion-Guided Video Generation
Input:
V,P ▷ Input video and target text prompt
{xt}Tt=1 ← DDIM-Inv[V] ∀t ∈ [T ]
ϵ0 ∼ N (0, I)
x̃T = LFξ(xT ) + (ϵ0 − LFξ(ϵ0)) ▷ Filtered noise (Eq. 4.2)
For t = T, . . . , 1 do
f(xt),f(x̃t)← Extract space-time features
SMM(f(xt)),SMM(f(x̃t))← Spatial marginal mean (Eq. 1)
x∗

t = argminx̃t
L(SMM(f(xt)),SMM(f(x̃t)))

x̃t−1 = Φ(x∗
t , P ) ▷ Apply a denoising step

Output: J ← x0

noise xT . However, we empirically found that this initial-
ization may often restrict edit-ability [44] (see SM for an
example). We thus extract only the low frequencies from
xT . Specifically, let x ∈ RF×M×N be a tensor represent-
ing F frames, with a spatial resolution of M×N . We denote
by LFξ(x) the operation of spatially downsampling and up-
sampling x by a factor of ξ. Then, our initial latent x̃T is
given by:

x̃T = LFξ(xT ) + (ϵ0 − LFξ(ϵ0)) (4)

where ϵ0 ∼ N (0, I) is a random noise. Intuitively, x̃T

preserves the low-frequencies of the DDIM noise where the
higher frequencies are determined by ϵ0.

To summarize, starting from the filtered latent x̃T , our
method deploys the following guided generation process:

x∗
t = argminx̃t

L(SMM(f(xt)),SMM(f(x̃t)))
x̃t−1 = Φ(x∗

t , P )

Our full framework is summarized in Alg. 1.

5. Results
We evaluate our method on various scenes and object cate-
gories, most of which involve camera as well as object mo-
tion. The driving videos are taken from DAVIS dataset [47]
and from the Web. Our video results and implementation
details are available in the Supplementary Materials (SM).

Figures 1, 4 show sample results of our method. As seen,
our method facilitates edits that involve notable changes to
the shape and structure of deforming objects, while preserv-
ing camera and objects’ motion. For instance, we preserve
the 3D pose of the car when transferring its motion to a bike
or a train (Fig. 1); and maintain the actions of non-rigidly
moving objects, e.g., sitting dog or walking camel in Fig. 4.

Baselines We compare our method to the following text-
driven video editing methods: (i) Shape-Aware Layered
Neural Atlases (SA-NLA) [31] that utilizes a pre-trained
layered video representation [27] and a pre-trained T2I
model [50]. (ii) TokenFlow [19], a zero-shot method that
works in the feature space of a pre-trained T2I model (iii)
GEN-1 [17] and (iv) Control-A-Video [13], both are video-
to-video diffusion models that condition the generation on

Original Frames OursSA-NLA

“A cat running in the cosmos”

“A minivan driving in a snowy forest”

“A duck swimming in a river”

Figure 5. Comparison to SA-NLA [31]. See SM for video results.

input depth maps, (v) Tune-A-Video [69] that inflates a
T2I model and finetunes it on a single test video, and (iv)
SDEdit [37] applied to the same T2V model as our method.

5.1. Qualitative evaluation

Figure 5 shows a qualitative comparison to SA-NLA [31].
Note that SA-NLA utilizes a layered video representa-
tion [27], which requires foreground/background separation
masks and takes ∼10 hours to train. Thus, we compare
to their provided videos and edit prompts qualitatively. As
seen in Fig. 5, both our method and SA-NLA exhibit high
fidelity to the original motion. Nevertheless, our method al-
lows for greater deviation in structure, (e.g., matching the
structure of a duck in the swan example) and adaption of
fine-grained motion traits, which are necessary for captur-
ing the unique attributes of the target object. For example,
adapting the shape and movement of a dog’s tail to resemble
a naturally-looking cat’s tail.

Figure 6 provides comparisons to the additional base-
lines. As seen, none of these methods can both convey the
original motion and adhere to the edit prompt. TokenFlow
[19] is tailored to preserve structure of the input video. Gen-
1 [17] and Control-A-Video [13] struggle to deviate from
the input shapes as they condition the generation on the per-
frame depth maps extracted from the input video. Tune-A-
Video [69] manages to fulfill the target prompt, yet objects
are not aligned in pose and motion (e.g., camel to bear). Our
method significantly outperforms these baselines, by suc-



Input
“A motorbike driving in a scenic desert” 

TokenFlow Gen-1 Tune-A-Video Control-A-Video Ours

“A car driving in a city”

“A giraffe walking in the zoo”

Figure 6. Comparison. Sample results comparing our method to TokenFlow [19], Gen-1 [17], Tune-A-Video [69], and Control-A-
Video [13]. See SM for full video comparisons.

(a) Original Frames (f) Full method(e) w/o low-freq. init(c) SMM feature loss (d) w/o guidance

“A giraffe walking on the rocks”

“A car driving in a forest
(b) Space-time feature loss

Figure 7. Ablation. (b-c) We compare alternative loss functions instead of our pairwise SMM differences loss (Eq. 4.2); (b) using full
space-time features reconstruction prevents deviations in appearance and shape; and (c) SMM feature reconstruction allows for more
flexibility yet retains appearance information. (d-f) Ablation of our key components: (d) directly sampling from the initial latent w/o
optimization preserves only the coarse layout. (e) Starting our optimization from randomly sampled noise (w/o low frequency filtering
Eq. 4.2) results in lower motion fidelity compared to our full method (f).

cessfully matching the desired edits, which require signif-
icant structural changes and may involve synthesizing dy-
namic scene elements (e.g., smoke behind the motorbike).
We refer the reader to the SM for full video results.

Quantitative evaluation. We numerically evaluate the key
aspects of our results using the following metrics:
(i) Edit fidelity. Following previous works (e.g., [17, 19]),
we use CLIP [49] to measure the similarity between each
frame and the target text and report the average score.

(ii) Motion fidelity. We aim to assess the fidelity of our re-
sults in preserving the original motion. Given our task in-
volves structural deviations, there is no alignment between
pixels in the original and output videos. Consequentially,
traditional metrics such as comparing optical-flow fields are
unsuitable for our use case. We thus introduce a new metric,
based on similarity between unaligned long-trajectories.
We expect that even under structural changes, the two sets
of trajectories would exhibit shared characteristics.

Specifically, we use off-the-shelf tracking method [26]



to estimate T = {τ1, . . . , τn}, T̃ = {τ̃1, . . . , τ̃m}, two sets
of tracklets in the input and output videos, respectively.

Inspired by the Chamfer distance, we define our Motion-
Fidelity-Score as follows. For each tracklet τi ∈ T , we
measure the similarity to its nearest neighbor in τ̃i ∈ T ,
and vice versa.

1

m

∑
τ̃∈T̃

max
τ∈T

corr(τ, τ̃) +
1

n

∑
τ∈T

max
τ̃∈T̃

corr(τ, τ̃) (5)

where the correlation between two tracklets corr(τ, τ̃) is
computed as follows, similarly to [33]:

corr(τ, τ̃) =
1

F

F∑
k=1

vxk · ṽxk + vyk · ṽyk√
(vxk)

2 + (vyk)
2 ·

√
(ṽxk)

2 + (ṽyk)
2

where (vxk , v
y
k), (ṽ

x
k , ṽ

y
k) are the kth frame displacement of

tracklets τ, τ̃ respectively.
Figure. 8 reports the metrics above for a set of 54 video-

edit text pairs containing 21 unique videos. Our method
outperforms the baselines by achieving both high fidelity to
the target text prompt and the original motion. As expetcted,
TokenFlow [19] achieves high motion fidelity score, yet a
low edit fidelity score. Control-A-Video [13] exhibits a sim-
ilar behaviour since it utilizes depth maps as a guidance sig-
nal to edit the video. Tune-A-Video [69] shows an inverse
trend, i.e., satisfying the desired edit at the cost of motion fi-
delity. We further consider SDEdit [37] with different noise
levels, none of which can resolve the motion-edit tradeoff.
Note that Gen1’s API outputs a different number of frames,
thus we could not quantitatively evaluate their performance.
(iii) User study. We employ the Two-alternative Forced
Choice (2AFC) protocol for text-driven video editing [2, 17,
19, 48]. Participants are presented with the input video, our
results and a baseline, and are asked to determine which
video better aligns with the text prompt while preserving
the motion of the original video. We collected 7000 user
judgments from 150 users. As seen in Table 1, our method
is consistently preferred over all baselines.

5.2. Ablations
In Fig. 7, we ablate key design choices in our framework.
First, we consider alternative loss functions by substituting
the pairwise SMM differences in Eq.4.2 with: (i) full space-
time features f and (ii) SMM features (Eq.1). Figure 7 (b)
shows that space-time features restrict both shape and ap-
pearance variations; optimizing for SMM features (c) in-
creases flexibility yet is insufficient for matching the edit.

We next ablate our guided sampling and latent initializa-
tion strategy. Sampling from the initial latent without op-
timization (d) converges to unrelated objects’ pose, while
initializing the optimization from randomly sampled noise
(e) fails to retain the original motion characteristics.

6. Discussion and conclusions
We tackled the task of text-driven motion transfer, focusing
on scenarios where the source and target objects differ in
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Figure 8. Quantitative evaluation. For each baseline, we mea-
sure CLIP text similarity (higher is better) and motion fidelity
(Eq. 5; higher is better). Our method exhibits a better balance
between these two metrics.

Input Edit

Figure 9. Limitations. Our method struggles to preserve the orig-
inal motion since the combination of the original motion and the
edit prompt may be out of distribution for the T2V model.

Method Judgements in our favor (%)

TokenFlow 72.57%
Control-A-Video 84.50%
Tune-A-Video 77.80%

Table 1. User Study. We report the percentage of judgments in
our favour w.r.t. each baseline.

shape and fine-grained motion traits. We introduced a zero-
shot method that utilizes a pre-trained text-to-video diffu-
sion model, through a simple optimization framework. Our
work is the first to analyze and reveal new insights about
space-time T2V features, and the first to show how to har-
ness their properties for text-driven motion transfer.

As for limitations, our performance relies on the gen-
erative priors learned by the T2V model. Thus, in some
cases, the combination of target object and input video mo-
tion may be out-of-distribution for the T2V model. In this
case, the motion fidelity of our results would be degraded
or suffer from visual artifacts (Fig. 9). Furthermore, pub-
licly available T2V models are still in infancy, in terms of



quality, resolution, video length, and the scale of their train-
ing data compared to the vast distribution of natural videos.
Despite the limitations of publicly available text-to-video
models, our method achieves a significant improvement
over prior state-of-the-art methods, demonstrating the po-
tential of leveraging the priors and space-time feature space
learned by these models.
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A. Text-to-Video Model Architecture and
Feature Selection

Text-to-Video Model. We use ZeroScope [8] text-to-video
model, which is claimed to be fine-tuned from a Mod-
elscope model [64] on video clips of the length of 24 frames
and 576x320 resolution. Our generated results are in the
same resolution with a length of 24 frames. The model was
inflated from the StableDiffusion model [51] by introducing
temporal layers within each building block of the UNet.

Feature Selection. The decoder of the UNet in ZeroScope
comprises four blocks, each with a different resolution. We
performed our analysis on coarse features, extracted from
the 2nd decoder block of the UNet. We noticed that dif-
ferent coarse features in this block performed similarly for
our task. Specifically, we tested intermediate features ex-
tracted from the spatial/temporal convolution models, out-
put tokens from the spatial/temporal attention models, as
well as features taken directly after the Upsampling block
(a.k.a semantic DIFT features[59]). We empirically found
that features extracted after the Upsampling block produce
more visually appealing edit results.

B. Implementation Details

Feature Extraction. To obtain intermediate latents, we fol-
low [62] and use DDIM inversion (applying DDIM sam-
pling in reverse order) with a classifier-free guidance scale
of 1 and 1000 forward steps, using a video-specific inver-
sion prompt. We use these intermediate latents for initial-
ization and extracting diffusion features.

Initialization and Sampling. In our experiments, we use
50 denoising steps using Restart Sampling [70] combined
with DDIM sampling [58], with a classifier-free guidance
scale of 10. To obtain the initial noise, we apply the down-
sampling/upsampling operation LFξ, described in Eq. 4
with a factor ξ = 4.

Optimization details. We apply the optimization de-
scribed in Sec. 4.2 for the initial 20 denoising steps. In most
of our experiments, we are using the Adam optimizer [30]
with a learning rate of 0.01 for 30 optimization steps, but
in cases where the edit required a bigger deviation from the
original structure, we used a linear learning rate decay from
0.005 to 0.002 for 10 optimization steps.

Runtime. The runtime of our method mainly consists of
two parts - DDIM inversion, which takes ~10 minutes, and
sampling with optimization, which takes ~7 minutes for 10
optimization steps per denoising step and ~15 minutes for
30 optimization steps per denoising step, depending on the
configuration.

C. Baseline Comparison Details
For comparing with Tune-A-Video [69], TokenFlow [19]
and Control-A-Video [13] we used the official reposito-

ries. For visual comparison with Gen-1 [17], we used the
publicly available web platform. Since this platform out-
puts videos of different lengths with some frames being du-
plicated, we excluded Gen-1 from numerical comparisons.
Since SA-NLA [31] takes 10 hours to train, we compare to
their provided videos and edit prompts qualitatively.
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